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Abstract—This paper has as main purpose to identify the 

dynamic components of the matrices in the motion equation, 
combining the motion of rigid body with the one of elastic body. The 
finite element modeling requires the identification of a proper 
procedure in order to establish accurate boundary conditions which 
assure continuous motion in the nodes. Finally, an application on a 
plane mechanism, a four-bar linkage, with theoretical results for the 
mathematical models validation is presented. These models are useful 
for the optimization of robot design and to implement active 
vibration control for real-time applications.  
 

I. INTRODUCTION 
ESEARCH regarding the finite element analysis of the 
mobile mechanical systems reached important stages, 

especially in the mathematical modeling. Some ways to 
develop the equations of motion are presented using Newton-
Euler approach, using a virtual power formulation, or using 
Hamilton’s principle with a Lagrangian formulation.  

Remarkable results were obtained by some authors as: 
Y.Wang and J.K.Mills [1], G. Piras, W. L. Cleghorn [2], 
Gravouil, Elguedj and Maigre [3]. 

The Lagrange finite element formulation was used to derive 
such a dynamic model for the flexible planar linkage with two 
translational and one rotational degree of freedom, and then 
the dynamic model was applied to the flexible link planar 
parallel manipulator based on standard kineto-elastodynamic 
assumptions [1].  

The dynamic finite element analysis of the flexible planar 
parallel manipulator was presented in [2] including the 
convergence analysis of the natural frequencies and the 
mapping of the first-order natural frequency with respect to the 
robot configuration. Elastic behavior was implemented by 
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using FEM in order to obtain a finite dimensional model. It 
had also been found that the geometric stiffness and the 
dynamic terms have a negligible effect on the response for this 
particular manipulator. 

A systematic procedure based on the Finite Element Method 
(FEM) and the Lagrange principle was presented in [4]. Links 
and joints were considered flexible and generic equations of 
motion expressed according to the angles of the actuated joints 
and the independent elastic degrees of freedom were obtained. 
This procedure was inspired by papers as [5-7] and is 
applicable for the elastodynamic modeling of industrial robots, 
either serial or parallel manipulators. 

Papers like [8-10] showed that the major difficulty of using 
FEM was the nonlinearity of the motion equations. The 
coefficients that appear in equations are position (time) 
dependent and, in some practical application like mechanisms 
with a periodical motion, they may be period. To solve this 
problem the motion had to be considered “frozen” for a very 
short interval of time. In this case the obtained equations might 
be considered linear.  

The two difficult and major problems when finite element 
method was used: one consisted in the fact that the equations 
contained more terms as in the classical procedures and the 
second was that the equations were only incremental valid, for 
a very short time interval; after this interval new coefficient for 
the motions equations had to be generate and the solutions 
previously obtained were the initial conditions for the new 
equations. The incremental motion equations were established 
for a general multi-bodies system with elastic elements being 
in a three-dimensional motion and the problems involved by 
using FEM procedures were analyzed. 

The unknowns in the elasto-dynamic analysis of a 
mechanical system with liaisons were the nodal displacements 
and the liaison forces. By assembling the motion equations 
written for each finite element the liaisons forces were 
eliminated and only nodal displacements were contained as 
unknowns in the motion equations. 

The liaisons between finite elements were realized by the 
nodes where the displacements might be equal or might be 
other type of functional relations between these.  When two 
finite elements belonged to two different elements (bodies) the 
liaison realized by node might determine relations more 
complicated between nodal displacement and their derivatives. 
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 An example of using FEM is offered by [11] where it was 
presented the finite elements analysis of the mechanical 
behavior for three main solar collector tracking systems: for 
plate, for dish and for trough solar collectors. The modeling 
algorithm by using FEM, the characteristics of the loads and of 
the restrictions were presented and, finally, the aim was to find 
out the critical position of the tracking systems, when the 
equivalent stresses and the displacements had a maximum 
value and to identify the free oscillations characteristics 
(modes, frequencies, accelerations). 

According to the conclusions, the analyzed structure of the 
tracking systems might be compared, as mechanical behavior. 
The solar collectors are used to transform the energy from the 
sun in heat used for domestic heat water or for buildings 
heating. It was necessary to find solution on the way to orient 
the solar collectors’ surface normal to the solar radiation 
during a day light period and during one year, also. The 
solution was given by the tracking systems. There are two 
types of tracking systems, mainly: tracking systems with one 
independent motion (according to the diurnal motion) and 
tracking systems with two independent motions (according to 
the diurnal and seasonal motions). In the design process of the 
tracking system it was important to find out the critical 
position of this, in order to identify the position when the 
equivalent stresses and the displacements values were maxim. 
The stresses and displacements fields were identified by using 
the finite elements method. The analysis of the vibration 
frequencies and shapes was useful to avoid the resonance 
phenomenon due to the action of the external dynamic loads, 
as wind or earthquake. 

Both Kineto-ElastoDynamic and Kineto-Elastostatic 
analyses of a four bar linkage mechanism were carried out in 
[12] for obtaining the elastic deformation responses. In order 
to provide a practical structural damping model able to deal 
with the frequency-dependent damping, the standard three 
parameters model of visco-elastic theory was introduced here 
to approximate the structural damping model for the dynamic 
analysis of flexible mechanism containing damping metal 
parts. Based on the experimental data of energy storage 
module and loss factor for a specific kind of damping alloy in 
a given frequency span, the three parameters were fitted using 
an optimization algorithm. The differential equations of beam 
element were derived through the established three parameters 
constitution in integral form and the virtual work principle. For 
the convenience of computation, the established finite element 
equations containing convolution integration were changed 
into three order ordinary differential equations. By means of 
the Kineto- Elastodynamics theory, the element dynamic 
equations were assembled into the system equations of flexible 
linkage mechanism, which were then transformed into a 
standard state variable model with time-varying coefficients. 
In order to solve the system equations efficiently, a closed 
form numerical algorithm was built by using the periodicity 
condition of mechanism. The solution of system’s state 

differential equations was transformed into solving a large-
scale linear algebraic equation group through time discretion. 

Our paper presents a method for dynamic analysis of 
mechanisms where the kinematic elements were considered 
deformable solids. The method was tested on a four-bar 
mechanism.  

The elastodinamic analysis was possible by coupling the 
motion as solid rigid body and the motion as deformable solid 
considering the links as finite elements. The equations of 
motion are decoupled by taking into account static and 
dynamic components for nodal forces matrix, stiffness matrix 
and damping matrix. The motion equations solving was 
possible by taking proper kinematic and geometric constraints 
imposed by the connections between the kinematic elements. 
The dynamic modeling is accomplished by developing a finite 
element formulation. The results of a numerical processing of 
mathematical models developed for a four-bar mechanism are 
presented in the second part of the paper. Understanding and 
controlling structural elastodynamic response are of great 
importance, due to their practical applications, especially for 
impact, contact and penetration problems.  

II. DETERMINATION OF ELASTOKINEMATIC PARAMETERS 
A kinematic linkage made by n rigid bodies, connected 

through n-1 kinematic pairs was considered as represented in 
Fig. 1. 

The following notations were used: 








 →→→

iiii z,y,xT - the reference frame attached to the element 

“i”, with the set of three mutually perpendicular (orthogonal) 
unit vectors: ( )iiii k,j,iW , n,i 1= . 








 →→→

0000 z,y,xT  - the global reference frame the set of 

three orthogonal unit vectors: ( )0000 k.j.iW , n,i 1= . 

i
→
δ , n,i 1=  - the vector of relative translational 

displacement between elements i-1 and i, relative to the 
reference frame Ti-1 if there is a translational pair between 
elements i and i-1  

 

{ } { } { }1-1- i
T

ii
z
i

y
i

x
ii W,, δδδδδ ==          (1) 

 

ir , n,i 1=  - the position vector relative to the reference 
frame Ti-1 attached to the point O’

i from where the relative 
translational displacement started. 

 

{ } { } { }1-1- i
T

ii
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i
y

i
x

ii Wrr,r,rr ==       (2) 
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Fig. 1 kinematic model 

 
Knowing the coordinate transformation matrix from a 

reference frame to another: 
 

{ } [ ]{ }ooii WAW 1-1- =                 (3) 

the vectors i
→
δ  and ir

−
 became: 

 

{ } [ ]{ }ooi
T

ii WA 1-δδ =           (4) 
 

{ } [ ]{ }ooi
T

ii WArr 1-=               (5) 
 

In Fig.2 it is represented the point Mn on the body En and 
u(M,t) the elastic displacement of point Mn. The elastic 
displacement vector is: 

 

{ }








=
→→

n
T wuu                 (6) 

Or: 
 

{ } [ ]{ }dNu =                   (7) 
 
where: - [ ]N  - the form functions matrix or the matrix of 

interpolation polynomials; 
- { }d  - the nodal displacements vector. 
The following equations may be written: 
 

→→

−

→
+= un rrr 1 ,                 (8) 
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where: 
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Fig. 2 the geometrical model of the elastic body 
 

So: 
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Considering the generalized coordinates: 
 

{ } { } { }{ } { }{ }{ }T
ii

T
i

T
i

T
i rrq δδ ==           (15) 

 
the position vector of the point Mn became: 
 

{ } [ ] { } { }( )[ ]















 ++∑=
→

−
=

→

0010
1

wA]N[drAqr n,
TTT

ni
n

i

T
i

   (16) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 7, 2013 710



 

 

The equations for velocities and accelerations: 
 

[ ] { } [ ][ ]

[ ] [ ]

{ } { }( )[ ][ ]












++

+








+







++∑









==

→

•

−−
=

−

•
→

→

000

0

1010
1

10

wA~]N[dr

ANd

A~qAq
dt

rdv

nn
TTT

n

n,
T

T

i,i,
T

i
n

i
i,

T

i

ω

ω

    (17) 

 

[ ] [ ][ ]

{ } [ ][ ] { } [ ][ ][ ]

[ ] [ ] [ ] [ ][ ]

{ } { } [ ]( )[ ][ ]

{ } { } [ ]( )[ ][ ][ ]












∑ ++

+∑ ++

+∑








+∑








+

∑ ++∑+







+∑









+∑








==

→

=

=

=

•

=

••
=

−−−
=

−−

=
−−

•

=
−

••
→

→

0000
1

00
1

11

1
101010

1
1010

1
1010

1
10

2

2

wA~~Ndr

A~Ndr

A~NdANd

A~~qA~q

A~qAq
dt

vda

n,n,n,
n

i

TTT
n

n,n,
n

i

TTT
n

n

i
n,on,o

T
Tn

i
n,o

T
T

n

i
i,i,i,

T
i

n

i
i,i,

T
i

n

i
i,i,

T

i
n

i
i,

T

i

ωω

ε

ω

ωωε

ω

  

 (18) 
The motion of a linear system is described by the following 

equations system, [13-16]: 
 

[ ] [ ] { } [ ] [ ]TT
TT

FKdCdMd =+








+






 •••

       (19) 

 
where: - [M] is the masses matrix assembled for the whole 
mechanism; 
   - [C] is the damping matrix assembled for the whole 
mechanism;  
   - [K] is the rigidity matrix assembled for the whole 
mechanism; 
   - [F] is the nodal forces vector assembled for the whole 
mechanism. 

For the link "e" the equation (13) became: 
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where: 
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The elementary nodal force may be determined with the 

relationship: 
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(24) 
The dynamic response of the system consists of two parts, 

one due to the initial conditions, which are rapidly amortized 
and one due to disturbing forces. 

Applying the finite element method, the continuous system 
was replaced with a discrete system with a finite number of 
degrees of freedom. Unknowns of the problem are no longer 
the displacement functions u(x,y,z,t), but the nodal 
displacements d(t). 

The system of partial differential equations (Lame's 
equations from the elasticity theory) turned into a system of 
differential equations. Matrices involved in the general 
equation of motion were identified based on the idea of 
overlapping rigid body motion over the deformable body 
motion. Rigid body motion was introduced by a reference set 
of coordinates that define the location and orientation of the 
local reference of every cinematic element. 

If the rigid body motion is eliminated, a system of linear 
differential equations is obtained, obviously because of the 
admitted assumptions, such as: 

- Assumption of small deformations; 
- Assumption of small displacements; 
- Assumption of linear material (Hooke Law). 
Also, in the event that the damping force is proportional 

relative to velocity, a system of linear differential equations 
with constant coefficients ([M], [K]] and [C]) is got. The 
composition of the two motions leaded to a complete dynamic 
analysis with multiple applications in practice. 

The motion of the mechanical system is described by the 
general equation (19), where the coefficients ([M], [K] and 
[C]) may vary over time. There were developed many 
numerical methods in order to solve differential equations at 
high speed, some of these methods considering that the 
dynamic response may be obtained with satisfactory accuracy 
by superimposing only the first eigenvectors. 
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III. ELASTODYNAMIC ANALYSIS OF A FOUR- BAR MECHANISM 
During the past two decades, considerable attention was 

paid to the investigation of the dynamic analysis and vibration 
control of flexible mechanisms in order to achieve high- speed 
and lightweight machines with accurate performance. Most of 
the area of mechanism deformation analysis was based on 
linear theory, whereby the effect of elastic deformations on the 
gross-body motion was assumed to be negligible.  

Various methods including finite element method, lump 
mass method, substructure method and continuum mechanics 
method have been discussed by various researchers. Among 
other methods, the finite element models have been employed 
in more general to flexible mechanisms. Flexible links in a 
mechanism are commonly modeled as elastic beams with and 
without consideration of the effects of large deformations, 
shear deformations, rotary inertia and axial deformations. 

 Once modeling of an unconstrained link is completed, the 
Lagrange multiplier method or the augmented Lagrange 
equations may be used to formulate the equations of motion 
for the entire mechanism by enforcing continuity conditions 
across the interfaces. These differential equations governing 
the kineto-elastodynamic behaviors of a mechanism are solved 
directly using numerical or analytical methods to study modal 
analysis, deflections and stresses in a planar mechanism using 
a cubic polynomial mode shape. 

The four-bar mechanism presented by Fig. 3 was 
considered, with the known data as follows: 

- the elements’ length [mm]; 
- the areas of the cross sections [mm2]; 
- the external forces system: gravity forces [N], inertia 

tensors, technological torque[N⋅mm]. 
The following steps were completed: 
1. The dynamic analysis of the mechanism considering its 

kinematic elements to be rigid. 
For this analysis the dynamic models` method has been 

used, obtaining de variation laws for the angular velocity and 
acceleration of the driving element and links from the analyzed 
mechanism (Fig 4 - Fig. 9). 
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Fig. 3 four-bar mechanism 
 
 

 

 
 

Fig. 4 the variation law of the crank angular velocity ω1(ϕ1) 
 
 
 

 
 

Fig. 5 the variation law of the crank angular acceleration ε1(ϕ1) 
 
 
 

 
 

Fig. 6 the variation law of the coupler angular velocity ω2(ϕ1) 
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Fig. 7 the variation law of the rocker angular velocity ω3(ϕ1) 
 
 
 

 
 
 

Fig. 8 the variation law of the coupler angular acceleration 
ε2(ϕ1) 

 
 

 
 
 

Fig. 9 the variation law of the rocker angular acceleration 
ε3(ϕ1) 

 

 
2. The elastodynamic analysis of the mechanism 
The dynamics general equation that rules the mechanism 

motion has the following form: 

[ ] [ ] [ ]{ } ( ){ }tFqKqCqM =+








+






 •••

          (25) 

where: [M]- the masses matrix assembled for the whole 
mechanism; [K] - the rigidity matrix assembled for the whole 
mechanism; [C] - the damping matrix assembled for the whole 
mechanism; [F] - the nodal forces vector assembled for the 
whole mechanism; {q}- the vector of the nodal displacements. 

The kinematic elements of the mechanism were considered 
as bar-type elements with three freedom degrees on each node. 
Based on the mathematical models presented before, there 
were identified and calculated the static and dynamic 
components of the matrices which define the motion equation 
of the mechanism in the local reference frame, as, the rigidity 
matrix, the damping matrix, the nodal forces matrix. 

2.1 The mechanism links were considered as bar-type 
elements, with three degrees of freedom per node. 

2.2 The nodal displacements for a complete description of 
the mechanism motion in dynamic regime were defined and 
identified. 

2.3 Based on the mathematical models presented in the 
paragraph 2, the static and dynamic components of the 
matrices that defined the equation of motion of the mechanism 
in the local system of axes were identified and calculated: 
Stiffness matrix; Damping matrix; Matrix of nodal forces. 

2.4 The coordinate transformation matrices from the local 
reference frame to the global reference frame were defined. 

2.5 The matrices from the equation of motion in the global 
reference frame were evaluated. 

2.6 The matrices noted above were assembled for the entire 
mechanism. 

2.7 The boundary conditions and the limit conditions were 
defined. 

2.8 A computer program for results numerical processing 
was developed. 

Exemplifications of numerical processing results are 
presented below. So, the variation laws of longitudinal and 
transverse elastic displacement are presented in Fig. 10 and 
Fig. 11, for the entire length of the crank, in Fig. 12 and Fig. 
13 for the entire length of the coupler, and in Fig. 14 and Fig. 
15 for the entire length of the rocker.  

In Fig. 16 and Fig. 17 there are represented the time 
variation laws of longitudinal and transverse nodal velocities 
for the node between the crank and the coupler.  

In Fig. 18 it is represented the angular nodal velocity, vθ21, 
and in Fig 19 it is represented the angular nodal acceleration, 
aθ21, for the node between the crank and the coupler.  

The time variation laws of longitudinal and transverse nodal 
accelerations for the same node, between the crank and the 
coupler, are shown in Fig. 20 and Fig. 21,  
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Fig. 10 the variation law of longitudinal elastic displacement of the 
crank 1 (t =0...1 sec.)  

 
 

 
 

Fig. 11 the variation law of transverse elastic displacement of the 
crank 1 (t =0...1 sec.) 

 

 
Fig. 12 the variation law of longitudinal elastic displacement of 

the coupler 2 (t =0...1 sec.) 

 
 
Fig. 13 the variation law of transverse elastic displacement of the 

coupler 2 (t =0...1 sec.) 
 

 
Fig. 14 the variation law of longitudinal elastic displacement of 

the rocker 3 (t =0...1 sec.) 
 

 
Fig. 15 the variation law of transverse elastic displacement of the 

rocker 3 (t =0...1 sec.) 
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Fig. 16 the time variation law of longitudinal nodal velocity for 
the node between the crank and the coupler, [mm/s] 

 

 
Fig. 17 the time variation law of transverse nodal velocity for the 

node between the crank and the coupler, [mm/s] 
 

 
 

Fig. 18 the time variation law of angular nodal velocity for the node 
between the crank and the coupler, vθ21, [rad/s] 

 

 
 

Fig. 19 the time variation law of angular nodal acceleration for the 
node between the crank and the coupler, aθ21 [rad/s2] 

 

 
 

Fig. 20 the time variation law of longitudinal nodal acceleration for 
the node between the crank and the coupler [mm/s2] 

 

 
 

Fig. 21 the time variation law of transverse nodal acceleration for the 
node between the crank and the coupler [mm/s2] 
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IV. CONCLUSION 
Mechanism systems are now being required to run at 

increasingly higher speeds while maintaining their positioning 
accuracy. The higher operating speeds mean that the 
mechanisms need to be made as light as possible to reduce the 
inertial forces and thus the driving torque requirements. 
However, the lighter members are more likely to vibrate 
elastically due to inertial and external forces. It thus becomes 
necessary to include in the dynamic analysis of mechanisms 
not only the effect of the rigid body motion, but also the 
flexibility of the linkages.  

Most of the area of mechanism deformation analysis is 
based on linear theory, whereby the effect of elastic 
deformations on the gross-body motion is assumed to be 
negligible. 

As general conclusion of our paper it may be noticed that 
the variation diagrams of the elasto-kinematic parameters 
(displacements, velocities and accelerations) are strongly 
influenced in form and values by the variation of the rigid 
body motion kinematic parameters (angular velocity and 
angular acceleration), for every analyzed kinematic element. 

The future research purpose is to use experimental 
equipment with high performance diagnosis apparatus, in order 
to determine the kinematic parameters which characterize the 
vibrations of the four-bar mechanism, for different working 
conditions, and experimentally verify the mathematical models 
and the numerical results presented in this paper. We hope to 
prove that the elastodynamic analysis of the four-bar 
mechanism considered as an assembly of finite elements 
coupled in nodes which materialized the kinematic pairs leads 
to results more accurate and closer to those of experimental 
models. 
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